DocumentCode
2203281
Title
An object-oriented clustering algorithm for VHR panchromatic images using nonparametric latent Dirichlet allocation
Author
Qi, Yinfeng ; Tang, Hong ; Shu, Yang ; Shen, Li ; Yue, Jianwei ; Jiang, Weiguo
Author_Institution
State Key Lab. of Earth Surface Processes & Resource Ecology, Beijing Normal Univ., Beijing, China
fYear
2012
fDate
22-27 July 2012
Firstpage
2328
Lastpage
2331
Abstract
In this paper, we present a novel object-oriented semantic clustering algorithm for VHR panchromatic satellite images using a variant of latent Dirichlet allocation model. Firstly, an image collection is implicitly generated by partitioning a large satellite image into densely overlapped sub-images. Then, the Latent Dirichlet Allocation with a hierarchy Dirichlet process is employed to model the image collection. Gibbs sampling is adopted for parameter estimation and image clustering. Specifically, the introduction of Dirichlet process is purposed to extend the LDA to an infinite mixtures model which can estimate the number of components (e.g. clusters in image analysis) automatically. Finally, the effect of the proposed algorithm is analyzed through experiments, and the results of it with the traditional K-means method over a QUICKBIRD image are compared.
Keywords
geophysical image processing; parameter estimation; pattern clustering; sampling methods; Gibbs sampling; K-means method; LDA; QUICKBIRD image; VHR panchromatic satellite image; hierarchy Dirichlet process; image clustering; image collection; infinite mixtures model; nonparametric latent Dirichlet allocation model; object-oriented semantic clustering algorithm; parameter estimation; satellite image partitioning; Adaptation models; Clustering algorithms; Object oriented modeling; Remote sensing; Resource management; Satellites; Semantics; Dirichlet process; Latent Dirichlet allocation;
fLanguage
English
Publisher
ieee
Conference_Titel
Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International
Conference_Location
Munich
ISSN
2153-6996
Print_ISBN
978-1-4673-1160-1
Electronic_ISBN
2153-6996
Type
conf
DOI
10.1109/IGARSS.2012.6351028
Filename
6351028
Link To Document