• DocumentCode
    2203281
  • Title

    An object-oriented clustering algorithm for VHR panchromatic images using nonparametric latent Dirichlet allocation

  • Author

    Qi, Yinfeng ; Tang, Hong ; Shu, Yang ; Shen, Li ; Yue, Jianwei ; Jiang, Weiguo

  • Author_Institution
    State Key Lab. of Earth Surface Processes & Resource Ecology, Beijing Normal Univ., Beijing, China
  • fYear
    2012
  • fDate
    22-27 July 2012
  • Firstpage
    2328
  • Lastpage
    2331
  • Abstract
    In this paper, we present a novel object-oriented semantic clustering algorithm for VHR panchromatic satellite images using a variant of latent Dirichlet allocation model. Firstly, an image collection is implicitly generated by partitioning a large satellite image into densely overlapped sub-images. Then, the Latent Dirichlet Allocation with a hierarchy Dirichlet process is employed to model the image collection. Gibbs sampling is adopted for parameter estimation and image clustering. Specifically, the introduction of Dirichlet process is purposed to extend the LDA to an infinite mixtures model which can estimate the number of components (e.g. clusters in image analysis) automatically. Finally, the effect of the proposed algorithm is analyzed through experiments, and the results of it with the traditional K-means method over a QUICKBIRD image are compared.
  • Keywords
    geophysical image processing; parameter estimation; pattern clustering; sampling methods; Gibbs sampling; K-means method; LDA; QUICKBIRD image; VHR panchromatic satellite image; hierarchy Dirichlet process; image clustering; image collection; infinite mixtures model; nonparametric latent Dirichlet allocation model; object-oriented semantic clustering algorithm; parameter estimation; satellite image partitioning; Adaptation models; Clustering algorithms; Object oriented modeling; Remote sensing; Resource management; Satellites; Semantics; Dirichlet process; Latent Dirichlet allocation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International
  • Conference_Location
    Munich
  • ISSN
    2153-6996
  • Print_ISBN
    978-1-4673-1160-1
  • Electronic_ISBN
    2153-6996
  • Type

    conf

  • DOI
    10.1109/IGARSS.2012.6351028
  • Filename
    6351028