DocumentCode :
2203281
Title :
An object-oriented clustering algorithm for VHR panchromatic images using nonparametric latent Dirichlet allocation
Author :
Qi, Yinfeng ; Tang, Hong ; Shu, Yang ; Shen, Li ; Yue, Jianwei ; Jiang, Weiguo
Author_Institution :
State Key Lab. of Earth Surface Processes & Resource Ecology, Beijing Normal Univ., Beijing, China
fYear :
2012
fDate :
22-27 July 2012
Firstpage :
2328
Lastpage :
2331
Abstract :
In this paper, we present a novel object-oriented semantic clustering algorithm for VHR panchromatic satellite images using a variant of latent Dirichlet allocation model. Firstly, an image collection is implicitly generated by partitioning a large satellite image into densely overlapped sub-images. Then, the Latent Dirichlet Allocation with a hierarchy Dirichlet process is employed to model the image collection. Gibbs sampling is adopted for parameter estimation and image clustering. Specifically, the introduction of Dirichlet process is purposed to extend the LDA to an infinite mixtures model which can estimate the number of components (e.g. clusters in image analysis) automatically. Finally, the effect of the proposed algorithm is analyzed through experiments, and the results of it with the traditional K-means method over a QUICKBIRD image are compared.
Keywords :
geophysical image processing; parameter estimation; pattern clustering; sampling methods; Gibbs sampling; K-means method; LDA; QUICKBIRD image; VHR panchromatic satellite image; hierarchy Dirichlet process; image clustering; image collection; infinite mixtures model; nonparametric latent Dirichlet allocation model; object-oriented semantic clustering algorithm; parameter estimation; satellite image partitioning; Adaptation models; Clustering algorithms; Object oriented modeling; Remote sensing; Resource management; Satellites; Semantics; Dirichlet process; Latent Dirichlet allocation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International
Conference_Location :
Munich
ISSN :
2153-6996
Print_ISBN :
978-1-4673-1160-1
Electronic_ISBN :
2153-6996
Type :
conf
DOI :
10.1109/IGARSS.2012.6351028
Filename :
6351028
Link To Document :
بازگشت