• DocumentCode
    2204087
  • Title

    Nonlinear parameter prediction of fossil power plant based on OSC-KPLS

  • Author

    Zhang, Xi ; Chen, Shihe ; Yan, Weiwu ; Shao, Huihe

  • Author_Institution
    Guangdong Electr. Power Res. Inst., China Southern Power Grid, Guangzhou, China
  • fYear
    2011
  • fDate
    6-8 June 2011
  • Firstpage
    672
  • Lastpage
    675
  • Abstract
    In order to solve problems of the failure of measured parameters and realize online optimal running in fossil power plant, a novel parameter prediction and estimation method based on orthogonal signal correction (OSC) and kernel partial least squares (KPLS) is proposed. OSC is a data preprocessing method that remove from X information not correlated to Y. Kernel partial least square is a promising regression method for tackling nonlinear problems because it can efficiently compute regression coefficients in high-dimensional feature space by means of nonlinear kernel function. In this paper, the prediction performance of the proposed approach (OSC-KPLS) is compared to those of PLS, OSC-PLS and KPLS using industrial example. OSC-KPLS effectively simplifies both the structure and interpretation of the resulting regression model and shows superior prediction performance compared to PLS, OSC-PLS and KPLS.
  • Keywords
    least squares approximations; parameter estimation; regression analysis; steam power stations; OSC-KPLS; data preprocessing method; estimation method; fossil power plant; kernel partial least squares; nonlinear kernel function; nonlinear parameter prediction method; orthogonal signal correction; regression coefficients; regression method; Data models; Estimation; Kernel; Laboratories; Predictive models; Fossil power plant; Inferential control; Kernel partial least squares (KPLS); Nonlinear; Parameter estimation; orthogonal signal correction (OSC);
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information and Automation (ICIA), 2011 IEEE International Conference on
  • Conference_Location
    Shenzhen
  • Print_ISBN
    978-1-4577-0268-6
  • Electronic_ISBN
    978-1-4577-0269-3
  • Type

    conf

  • DOI
    10.1109/ICINFA.2011.5949078
  • Filename
    5949078