DocumentCode :
2204914
Title :
On the Determination of Epsilon during Discriminative GMM Training
Author :
Guido, Rodrigo Capobianco ; Chen, Shi-Huang ; Junior, Sylvio Barbon ; Souza, Leonardo Mendes ; Vieira, Lucimar Sasso ; Rodrigues, Luciene Cavalcanti ; Escola, Joao Paulo Lemos ; Zulato, Paulo Ricardo Franchi ; Lacerda, Michel Alves ; Ribeiro, Jussara
Author_Institution :
SpeechLab, Univ. of Sao Paulo, Sao Carlos, Brazil
fYear :
2010
fDate :
13-15 Dec. 2010
Firstpage :
362
Lastpage :
364
Abstract :
Discriminative training of Gaussian Mixture Models (GMMs) for speech or speaker recognition purposes is usually based on the gradient descent method, in which the iteration step-size, epsilon, uses to be defined experimentally. In this letter, we derive an equation to adaptively determine epsilon, by showing that the second-order Newton-Raphson iterative method to find roots of equations is equivalent to the gradient descent algorithm.
Keywords :
Gaussian processes; Newton-Raphson method; gradient methods; speaker recognition; EPSILON; GMM; Gaussian mixture model; Newton Raphson method; discriminative training; gradient descent algorithm; gradient descent method; iterative method; speaker recognition; speech recognition; Markov Models; discriminative training of Gaussian Mixture Models (GMMs); speaker identification; speech recognition;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multimedia (ISM), 2010 IEEE International Symposium on
Conference_Location :
Taichung
Print_ISBN :
978-1-4244-8672-4
Electronic_ISBN :
978-0-7695-4217-1
Type :
conf
DOI :
10.1109/ISM.2010.66
Filename :
5693868
Link To Document :
بازگشت