• DocumentCode
    22057
  • Title

    Online Hyperparameter-Free Sparse Estimation Method

  • Author

    Zachariah, Dave ; Stoica, Petre

  • Author_Institution
    Dept. of Inf. Technol., Uppsala Univ., Uppsala, Sweden
  • Volume
    63
  • Issue
    13
  • fYear
    2015
  • fDate
    1-Jul-15
  • Firstpage
    3348
  • Lastpage
    3359
  • Abstract
    In this paper, we derive an online estimator for sparse parameter vectors which, unlike the LASSO approach, does not require the tuning of any hyperparameters. The algorithm is based on a covariance matching approach and is equivalent to a weighted version of the square-root LASSO. The computational complexity of the estimator is of the same order as that of the online versions of regularized least-squares (RLS) and LASSO. We provide a numerical comparison with feasible and infeasible implementations of the LASSO and RLS to illustrate the advantage of the proposed online hyperparameter-free estimator.
  • Keywords
    compressed sensing; computational complexity; least squares approximations; parameter estimation; regression analysis; LASSO; RLS; computational complexity; covariance matching approach; online hyperparameter-free sparse estimation method; regularized least squares method; square-root LASSO weighted version; Complexity theory; Cost function; Covariance matrices; Estimation; Minimization; Noise; SPICE; Parameter estimation; recursive estimation; sparse parameters;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2015.2421472
  • Filename
    7084199