Title :
Multi-agent Random Walks for Local Clustering on Graphs
Author :
Alamgir, Morteza ; Von Luxburg, Ulrike
Author_Institution :
Max Planck Inst. for Biol. Cybern., Tübingen, Germany
Abstract :
We consider the problem of local graph clustering where the aim is to discover the local cluster corresponding to a point of interest. The most popular algorithms to solve this problem start a random walk at the point of interest and let it run until some stopping criterion is met. The vertices visited are then considered the local cluster. We suggest a more powerful alternative, the multi-agent random walk. It consists of several ``agents´´ connected by a fixed rope of length l. All agents move independently like a standard random walk on the graph, but they are constrained to have distance at most l from each other. The main insight is that for several agents it is harder to simultaneously travel over the bottleneck of a graph than for just one agent. Hence, the multi-agent random walk has less tendency to mistakenly merge two different clusters than the original random walk. In our paper we analyze the multi-agent random walk theoretically and compare it experimentally to the major local graph clustering algorithms from the literature. We find that our multi-agent random walk consistently outperforms these algorithms.
Keywords :
data mining; graphs; multi-agent systems; pattern clustering; data mining; graph clustering; multiagent random walk; Graph Clustering; Local Clustering; Mixing Time; Random Walk;
Conference_Titel :
Data Mining (ICDM), 2010 IEEE 10th International Conference on
Conference_Location :
Sydney, NSW
Print_ISBN :
978-1-4244-9131-5
Electronic_ISBN :
1550-4786
DOI :
10.1109/ICDM.2010.87