• DocumentCode
    2207923
  • Title

    Multimodal optimization in the context of Sparse Component Analysis

  • Author

    Nadalin, Everton Z. ; Boccato, Levy ; Attux, Romis ; Duarte, Leonardo T. ; Lopes, Amauri ; Romano, João Marcos T ; Suyama, Ricardo

  • Author_Institution
    DCA, Univ. of Campinas (UNICAMP), Campinas, Brazil
  • fYear
    2011
  • fDate
    11-15 April 2011
  • Firstpage
    85
  • Lastpage
    91
  • Abstract
    In this work, we investigate the use of a multimodal search framework to deal with a representative formulation of the Sparse Component Analysis (SCA) problem. The proposed method, which employs an artificial immune network in the role of multimodal optimization tool, is explained and tested in different scenarios. The results are promising and indicate the relevance of using global search tool in SCA, as well as the soundness of the immune-inspired proposal.
  • Keywords
    blind source separation; independent component analysis; optimisation; artificial immune network; blind source separation; multimodal optimization; multimodal search framework; sparse component analysis; Cloning; Context; Estimation; Immune system; Optimization; Sensors; Source separation; artificial immune systems; multimodal optimization; source separation; sparse component analysis;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP), 2011 IEEE Symposium on
  • Conference_Location
    Paris
  • Print_ISBN
    978-1-4244-9913-7
  • Type

    conf

  • DOI
    10.1109/CIMSIVP.2011.5949237
  • Filename
    5949237