DocumentCode :
2208416
Title :
Temporal analysis of text data using latent variable models
Author :
Mølgaard, Lasse L. ; Larsen, Jan ; Goutte, Cyril
Author_Institution :
Sect. for Cognitive Syst., DTU Inf., Lyngby, Denmark
fYear :
2009
fDate :
1-4 Sept. 2009
Firstpage :
1
Lastpage :
6
Abstract :
Detecting and tracking of temporal data is an important task in multiple applications. In this paper we study temporal text mining methods for music information retrieval. We compare two ways of detecting the temporal latent semantics of a corpus extracted from Wikipedia, using a stepwise probabilistic latent semantic analysis (PLSA) approach and a global multiway PLSA method. The analysis indicates that the global analysis method is able to identify relevant trends which are difficult to get using a step-by-step approach. Furthermore we show that inspection of PLSA models with different number of factors may reveal the stability of temporal clusters making it possible to choose the relevant number of factors.
Keywords :
data mining; information retrieval; music; probability; text analysis; Wikipedia; global analysis method; latent variable models; music information retrieval; stepwise probabilistic latent semantic analysis approach; temporal latent semantics; temporal text mining method; Councils; Data analysis; Data mining; Informatics; Inspection; Music information retrieval; Stability; Tensile stress; Text mining; Wikipedia;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning for Signal Processing, 2009. MLSP 2009. IEEE International Workshop on
Conference_Location :
Grenoble
Print_ISBN :
978-1-4244-4947-7
Electronic_ISBN :
978-1-4244-4948-4
Type :
conf
DOI :
10.1109/MLSP.2009.5306265
Filename :
5306265
Link To Document :
بازگشت