DocumentCode :
2209048
Title :
Hyperspectral image denoising using 3D wavelets
Author :
Rasti, Behnood ; Sveinsson, Johannes R. ; Ulfarsson, Magnus O. ; Benediktsson, Jon Atli
Author_Institution :
Fac. of Electr. & Comput. Eng., Univ. of Iceland, Reykjavik, Iceland
fYear :
2012
fDate :
22-27 July 2012
Firstpage :
1349
Lastpage :
1352
Abstract :
In this paper, we propose a denoising method for hyperspectral images using 3D wavelets. We use the sparse analysis regularization using a 3D overcomplete wavelet dictionary. The minimization problem is solved using iterative Chambolle algorithm. The simulation results show that the 3D dictionary outperforms the 2D one, in terms of Peak Signal to Noise Ratio (PSNR). Denosing hysperspectral cubes is likely to increase the classification accuracy of the hyperspectral data since it can enhance the spectral profiles (or features) that can be useful to discriminate between information classes.
Keywords :
image denoising; iterative methods; minimisation; wavelet transforms; 3D overcomplete wavelet dictionary; 3D wavelet; hyperspectral data; hyperspectral image denoising; hysperspectral cubes; iterative Chambolle algorithm; minimization problem; peak signal to noise ratio; sparse analysis regularization; spectral profiles; Dictionaries; Hyperspectral imaging; Noise reduction; PSNR; Wavelet transforms; 3D wavelets; Hyperspectral image; denoising; overcomplete dictionary; sparse regularization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International
Conference_Location :
Munich
ISSN :
2153-6996
Print_ISBN :
978-1-4673-1160-1
Electronic_ISBN :
2153-6996
Type :
conf
DOI :
10.1109/IGARSS.2012.6351286
Filename :
6351286
Link To Document :
بازگشت