• DocumentCode
    2209759
  • Title

    Addressing Concept-Evolution in Concept-Drifting Data Streams

  • Author

    Masud, Mohammad M. ; Chen, Qing ; Khan, Latifur ; Aggarwal, Charu ; Gao, Jing ; Han, Jiawei ; Thuraisingham, Bhavani

  • Author_Institution
    Dept. of Comput. Sci., Univ. of Texas at Dallas, Dallas, TX, USA
  • fYear
    2010
  • fDate
    13-17 Dec. 2010
  • Firstpage
    929
  • Lastpage
    934
  • Abstract
    The problem of data stream classification is challenging because of many practical aspects associated with efficient processing and temporal behavior of the stream. Two such well studied aspects are infinite length and concept-drift. Since a data stream may be considered a continuous process, which is theoretically infinite in length, it is impractical to store and use all the historical data for training. Data streams also frequently experience concept-drift as a result of changes in the underlying concepts. However, another important characteristic of data streams, namely, concept-evolution is rarely addressed in the literature. Concept-evolution occurs as a result of new classes evolving in the stream. This paper addresses concept-evolution in addition to the existing challenges of infinite-length and concept-drift. In this paper, the concept-evolution phenomenon is studied, and the insights are used to construct superior novel class detection techniques. First, we propose an adaptive threshold for outlier detection, which is a vital part of novel class detection. Second, we propose a probabilistic approach for novel class detection using discrete Gini Coefficient, and prove its effectiveness both theoretically and empirically. Finally, we address the issue of simultaneous multiple novel class occurrence, and provide an elegant solution to detect more than one novel classes at the same time. We also consider feature-evolution in text data streams, which occurs because new features (i.e., words) evolve in the stream. Comparison with state-of-the-art data stream classification techniques establishes the effectiveness of the proposed approach.
  • Keywords
    data analysis; probability; text analysis; adaptive threshold; concept drifting; concept-evolution phenomenon; data stream classification; discrete Gini Coefficient; feature evolution; infinite length; novel class detection; outlier detection; probabilistic approach; text data streams; concept-evolution; data stream; novel class; outlier;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Data Mining (ICDM), 2010 IEEE 10th International Conference on
  • Conference_Location
    Sydney, NSW
  • ISSN
    1550-4786
  • Print_ISBN
    978-1-4244-9131-5
  • Electronic_ISBN
    1550-4786
  • Type

    conf

  • DOI
    10.1109/ICDM.2010.160
  • Filename
    5694063