DocumentCode :
2211964
Title :
Nonlinear state estimation using neural filters
Author :
Haykin, Simon ; Yee, Paul
Author_Institution :
Commun. Res. Lab., McMaster Univ., Hamilton, Ont., Canada
Volume :
2
fYear :
1996
fDate :
21-24 Oct 1996
Firstpage :
602
Abstract :
In this paper we present procedures for estimating the state of a nonlinear dynamical system, which are based on the use of radial basis function (RBF) networks. Experimental results are presented, which compare the performance of this approach with that of J.T. Lo published in 1995
Keywords :
adaptive filters; feedforward neural nets; filtering theory; nonlinear dynamical systems; nonlinear filters; state estimation; state-space methods; RBF networks; neural filters; nonlinear dynamical system; radial basis function networks; state estimation; state-space model; Adaptive filters; Additive noise; Filtering; Multilayer perceptrons; Nonlinear dynamical systems; Nonlinear equations; Nonlinear filters; Signal processing algorithms; State estimation; Wiener filter;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Military Communications Conference, 1996. MILCOM '96, Conference Proceedings, IEEE
Conference_Location :
McLean, VA
Print_ISBN :
0-7803-3682-8
Type :
conf
DOI :
10.1109/MILCOM.1996.569416
Filename :
569416
Link To Document :
بازگشت