DocumentCode :
22131
Title :
Multi-Charts for Comparative 3D Ensemble Visualization
Author :
Demir, Ismail ; Dick, Chris ; Westermann, Rudiger
Author_Institution :
Comput. Graphics & Visualization Group, Tech. Univ. Munchen, Garching, Germany
Volume :
20
Issue :
12
fYear :
2014
fDate :
Dec. 31 2014
Firstpage :
2694
Lastpage :
2703
Abstract :
A comparative visualization of multiple volume data sets is challenging due to the inherent occlusion effects, yet it is important to effectively reveal uncertainties, correlations and reliable trends in 3D ensemble fields. In this paper we present bidirectional linking of multi-charts and volume visualization as a means to analyze visually 3D scalar ensemble fields at the data level. Multi-charts are an extension of conventional bar and line charts: They linearize the 3D data points along a space-filling curve and draw them as multiple charts in the same plot area. The bar charts encode statistical information on ensemble members, such as histograms and probability densities, and line charts are overlayed to allow comparing members against the ensemble. Alternative linearizations based on histogram similarities or ensemble variation allow clustering of spatial locations depending on data distribution. Multi-charts organize the data at multiple scales to quickly provide overviews and enable users to select regions exhibiting interesting behavior interactively. They are further put into a spatial context by allowing the user to brush or query value intervals and specific distributions, and to simultaneously visualize the corresponding spatial points via volume rendering. By providing a picking mechanism in 3D and instantly highlighting the corresponding data points in the chart, the user can go back and forth between the abstract and the 3D view to focus the analysis.
Keywords :
curve fitting; data analysis; data visualisation; learning (artificial intelligence); pattern clustering; rendering (computer graphics); 3D data points; alternative linearizations; bar charts; comparative 3D ensemble visualization; data visualization; histograms; inherent occlusion effects; multicharts; multiple volume data sets; picking mechanism; probability density; space-filling curve; spatial location clustering; statistical information; visually 3D scalar ensemble field; volume rendering; volume visualization; Data visualization; Histograms; Image color analysis; Three-dimensional displays; Uncertainty; Visualization; Ensemble visualization; brushing and linking; statistical analysis;
fLanguage :
English
Journal_Title :
Visualization and Computer Graphics, IEEE Transactions on
Publisher :
ieee
ISSN :
1077-2626
Type :
jour
DOI :
10.1109/TVCG.2014.2346448
Filename :
6875990
Link To Document :
بازگشت