DocumentCode :
2214529
Title :
Evolutionary algorithm-based parameter identification for nonlinear dynamical systems
Author :
Banerjee, Amit ; Abu-Mahfouz, Issam
Author_Institution :
Sch. of Sci., Eng. & Technol., Pennsylvania State Univ. at Harrisburg, Middletown, PA, USA
fYear :
2011
fDate :
5-8 June 2011
Firstpage :
1
Lastpage :
5
Abstract :
The inverse problem of parameter estimation for Duffing oscillator, a chaotic dynamical system well known in engineering is solved using quantum-inspired evolutionary algorithm, differential evolution and genetic algorithms. The paper focuses on such combination of parameters that produce periodic responses instead of purely chaotic responses. The feature set used is a set of displacement values of the first five Poincare points, after ignoring transient effects. All approaches correctly identify the target set of parameters as producing the given response; however, depending on the fitness landscape some parameters are more difficult to identify than others especially when using the canonical genetic algorithm. This paper is also the first to investigate the quantum-inspired evolutionary algorithm for such parameter identification problems.
Keywords :
genetic algorithms; inverse problems; nonlinear dynamical systems; parameter estimation; Duffing oscillator; Poincare point; chaotic dynamical system; differential evolution; genetic algorithms; inverse problem; nonlinear dynamical systems; parameter estimation; parameter identification; quantum-inspired evolutionary algorithm; Aerospace electronics; Chaos; Evolutionary computation; Genetic algorithms; Inverse problems; Oscillators; Parameter estimation; Duffing oscillator; chaotic systems; parameter identification; quantum-inspired evolutionary algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation (CEC), 2011 IEEE Congress on
Conference_Location :
New Orleans, LA
ISSN :
Pending
Print_ISBN :
978-1-4244-7834-7
Type :
conf
DOI :
10.1109/CEC.2011.5949590
Filename :
5949590
Link To Document :
بازگشت