Title :
Parameter optimization in the regularized kernel minimum noise fraction transformation
Author :
Nielsen, Allan A. ; Vestergaard, Jacob S.
Author_Institution :
DTU Space - Nat. Space Inst., Tech. Univ. of Denmark, Lyngby, Denmark
Abstract :
Based on the original, linear minimum noise fraction (MNF) transformation and kernel principal component analysis, a kernel version of the MNF transformation was recently introduced. Inspired by we here give a simple method for finding optimal parameters in a regularized version of kernel MNF analysis. We consider the model signal-to-noise ratio (SNR) as a function of the kernel parameters and the regularization parameter. In 2-4 steps of increasingly refined grid searches we find the parameters that maximize the model SNR. An example based on data from the DLR 3K camera system is given.
Keywords :
geophysical image processing; geophysical techniques; optimisation; principal component analysis; DLR 3K camera system; MNF transformation; kernel MNF analysis; kernel principal component analysis; linear minimum noise fraction transformation; optimal parameters; parameter optimization; regularization parameter; regularized kernel minimum noise fraction transformation; signal-to-noise ratio; Cameras; Eigenvalues and eigenfunctions; Kernel; Noise measurement; Optimization; Signal to noise ratio;
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International
Conference_Location :
Munich
Print_ISBN :
978-1-4673-1160-1
Electronic_ISBN :
2153-6996
DOI :
10.1109/IGARSS.2012.6351561