Title :
Distributed island-model genetic algorithms using heterogeneous parameter settings
Author :
Gong, Yiyuan ; Fukunaga, Alex
Author_Institution :
Grad. Sch. of Arts & Sci., Univ. of Tokyo, Tokyo, Japan
Abstract :
Achieving good performance with a parallel genetic algorithm requires properly configuring control parameters such as mutation rate, crossover rate, and population size. We consider the problem of setting control parameter values in a standard, island-model distributed genetic algorithm. As an alternative to tuning parameters by hand or using a self-adaptive approach, we propose a very simple strategy which statically assigns random control parameter values to each processor. Experiments on benchmark problems show that this simple approach can yield results which are competitive with homogeneous distributed genetic algorithm using parameters tuned specifically for each of the benchmarks.
Keywords :
genetic algorithms; parallel processing; benchmark problem; crossover rate; distributed island-model genetic algorithm; heterogeneous parameter setting; homogeneous distributed genetic algorithm; parallel genetic algorithm; parameter control; random control parameter; self-adaptive approach; tuning parameter; Benchmark testing; Genetic algorithms; Optimization; Process control; Runtime; Sorting; Tuning;
Conference_Titel :
Evolutionary Computation (CEC), 2011 IEEE Congress on
Conference_Location :
New Orleans, LA
Print_ISBN :
978-1-4244-7834-7
DOI :
10.1109/CEC.2011.5949703