DocumentCode :
2219643
Title :
A self-optimization approach for L-SHADE incorporated with eigenvector-based crossover and successful-parent-selecting framework on CEC 2015 benchmark set
Author :
Guo, Shu-Mei ; Tsai, Jason Sheng-Hong ; Yang, Chin-Chang ; Hsu, Pang-Han
Author_Institution :
Computer Science and Information Engineering, National Cheng-Kung University, Tainan, Taiwan, R.O.C.
fYear :
2015
fDate :
25-28 May 2015
Firstpage :
1003
Lastpage :
1010
Abstract :
A self-optimization approach and a new success-history based adaptive differential evolution with linear population size reduction (L-SHADE) which is incorporated with an eigenvector-based (EIG) crossover and a successful-parent-selecting (SPS) framework are proposed in this paper. The EIG crossover is a rotationally invariant operator which provides superior performance on numerical optimization problems with highly correlated variables. The SPS framework provides an alternative of the selection of parents to prevent the situation of stagnation. The proposed SPS-L-SHADE-EIG combines the L-SHADE with the EIG and SPS frameworks. To further improve the performance, the parameters of SPS-L-SHADE-EIG are self-optimized in terms of each function under IEEE Congress on Evolutionary Computation (CEC) benchmark set in 2015. The stochastic population search causes the performance of SPS-L-SHADE-EIG noisy, and therefore we deal with the noise by re-evaluating the parameters if the parameters are not updated for more than an unacceptable amount of times. The experiment evaluates the performance of the self-optimized SPS-L-SHADE-EIG in CEC 2015 real-parameter single objective optimization competition.
Keywords :
Benchmark testing; Covariance matrices; Erbium; Optimization; Sociology; Uncertainty; differential evolution; global numerical optimization; noisy optimization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation (CEC), 2015 IEEE Congress on
Conference_Location :
Sendai, Japan
Type :
conf
DOI :
10.1109/CEC.2015.7256999
Filename :
7256999
Link To Document :
بازگشت