Title :
Symbolic failure analysis of custom circuits due to excessive leakage current
Author :
Song, H.-Y. ; Bohidar, S. ; Bahar, R. Iris ; Grodstein, Joel
Author_Institution :
Div. of Eng., Brown Univ., Providence, RI, USA
Abstract :
As process geometries shrink, leakage current is becoming an increasingly critical problem, especially in full-custom circuit designs. Excessive leakage may cause functional failure at some or all operating conditions. Traditional circuit analysis techniques may be used to verify if leakage currents are within allowable limits so as not to cause functional failures; however, unless the analysis takes into account specific input constraints for the circuit, the results may be overly pessimistic. We approach this noise analysis problem symbolically using algebraic decision diagrams (ADDs). Using ADDs allows us to efficiently analyze leakage within a channel-connected region (CCR) as a function of its inputs. Exclusivity constraints are easily included in the analysis, thus allowing for more accurate (and less pessimistic) results. Our approach is general and can be applied to any arbitrary circuit structure, including a mesh. The effectiveness of our approach is demonstrated on circuits from industry used in Alpha 21264 and 21364 instead of the usual ISCAS benchmarks. We show that such an analysis can lead to up to a 90% difference in worst case voltage drop. This difference can translate into significant savings in manpower by avoiding the need to verify many unrealizable worst-case conditions with other, more costly, simulation techniques.
Keywords :
CMOS digital integrated circuits; application specific integrated circuits; circuit CAD; decision diagrams; failure analysis; integrated circuit design; leakage currents; CAD tool; algebraic decision diagrams; channel-connected region; custom integrated circuit designs; excessive leakage current; manpower savings; noise analysis problem; simulation techniques; symbolic failure analysis; worst-case condition verification; Circuit analysis; Circuit noise; Circuit synthesis; Design engineering; Failure analysis; Geometry; Iris; Leakage current; Subthreshold current; Voltage;
Conference_Titel :
Computer Design, 2003. Proceedings. 21st International Conference on
Print_ISBN :
0-7695-2025-1
DOI :
10.1109/ICCD.2003.1240875