DocumentCode :
2220657
Title :
Data driven automatic model selection and parameter adaptation - a case study for septic shock
Author :
Brause, R.
Author_Institution :
Johann Wolfgang Goethe Univ., Frankfurt, Germany
fYear :
2004
fDate :
15-17 Nov. 2004
Firstpage :
278
Lastpage :
283
Abstract :
In bioinformatics, biochemical pathways can be modeled by many differential equations. It is still an open problem how to fit the huge amount of parameters of the equations to the available data. Here, the approach of systematically learning the parameters is necessary. This paper propose as model selection criterion the least complex description of the observed data by the model, the minimum description length. For the small, but important example of inflammation modeling the performance of the approach is evaluated.
Keywords :
Runge-Kutta methods; biochemistry; biology computing; data models; differential equations; learning (artificial intelligence); neural nets; parameter estimation; biochemical pathways; bioinformatics; data driven automatic model selection; differential equation; inflammation modeling; parameter adaptation; septic shock; Animals; Biochemistry; Bioinformatics; Computer aided software engineering; Differential equations; Electric shock; Immune system; Laboratories; Organisms; Predictive models;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Tools with Artificial Intelligence, 2004. ICTAI 2004. 16th IEEE International Conference on
ISSN :
1082-3409
Print_ISBN :
0-7695-2236-X
Type :
conf
DOI :
10.1109/ICTAI.2004.47
Filename :
1374199
Link To Document :
بازگشت