Title :
Adaptively changed winning number LVQ for constructing an accurate control model from enormous and low quality plant data
Author :
Kayama, Masahiro ; Sugita, Youichi ; Morooka, Yasuo ; Kumayama, Jirou
Author_Institution :
Hitachi Ltd., Ibaraki, Japan
Abstract :
Construction or tuning of control models is often done using data obtained from an actually working plant. We discuss how to improve these plant data from the viewpoints of decreasing their size to a manageable number without losing their statistical property, excluding ill-suited ones, and dissolving the partial distribution to obtain an accurate control model. We call our procedure plant data purification. First, the learning vector quantization (LVQ) is improved to obtain the desired number of purified data, where, under quantization, the number of winning quantization vectors is changed adaptively and abnormal data determined by similarity with their nearest quantization vector are excluded out of a set of quantized plant data. Then the developed method is further improved to dissolve the partial distribution of data to obtain a uniform distribution. Finally, the proposed method is applied to the construction of a control model used in a continuous galvanizing plant and its effectiveness is demonstrated
Keywords :
data handling; metallurgical industries; neurocontrollers; predictive control; process control; vector quantisation; adaptively changed winning number LVQ; continuous galvanizing plant; control model; learning vector quantization; low quality plant data; neural nets; partial data distribution; plant data purification; predictive control; process control; Coatings; Control system synthesis; Employee welfare; Frequency; Galvanizing; Predictive models; Purification; Statistical distributions; System identification; Vector quantization;
Conference_Titel :
Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Joint Conference on
Conference_Location :
Anchorage, AK
Print_ISBN :
0-7803-4859-1
DOI :
10.1109/IJCNN.1998.682366