DocumentCode :
2223891
Title :
Graphical models for decoding in BCI visual speller systems
Author :
Martens, Suzanna ; Farquhar, Jason ; Hill, Jeremy ; Schölkopf, Bernhard
Author_Institution :
Empirical Inference Dept., Max Planck Inst. for Biol. Cybern., Tubingen
fYear :
2009
fDate :
April 29 2009-May 2 2009
Firstpage :
470
Lastpage :
473
Abstract :
We introduce the use of graphical models in the decoding process of brain-computer interface (BCI) visual speller data. The standard decoding implicitly assumes a simple graphical model which does not incorporate overlap and refractory effects of the brain signals. We propose a more realistic graphical model that does incorporate these effects. The decoding that follows from the graphical model involves the use of multiple classifiers. Our approach is tested on real visual speller data. The results show that the proposed method slightly outperforms the standard decoding method.
Keywords :
brain-computer interfaces; encoding; handicapped aids; medical signal processing; BCI visual speller systems; brain signals; brain-computer interface; decoding; graphical models; Biological information theory; Brain computer interfaces; Cognition; Cybernetics; Decoding; Electroencephalography; Enterprise resource planning; Graphical models; Neural engineering; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Engineering, 2009. NER '09. 4th International IEEE/EMBS Conference on
Conference_Location :
Antalya
Print_ISBN :
978-1-4244-2072-8
Electronic_ISBN :
978-1-4244-2073-5
Type :
conf
DOI :
10.1109/NER.2009.5109335
Filename :
5109335
Link To Document :
بازگشت