DocumentCode :
2234250
Title :
MAP estimation of two-sided gamma random vectors in AWGN
Author :
Kittisuwan, Pichid ; Chanwimaluang, Thitipom
Author_Institution :
Fac. of Eng., Mahidol Univ., Bangkok, Thailand
fYear :
2012
fDate :
19-21 March 2012
Firstpage :
368
Lastpage :
371
Abstract :
In this work, we present new Bayesian estimator for spherically-contoured Two-Sided Gamma random vectors in additive white Gaussian noise (AWGN). This PDF is used in view of the fact that it is more peaked and the tails are heavier to be incorporated in the probabilistic modeling of the wavelet coefficients. One of the cruxes of the Bayesian image denoising methods is to estimate statistical parameters for a shrinkage function. We employ maximum a posterior (MAP) estimation to calculate local variances with Gamma density prior for local observed variances and Gaussian distribution for noisy wavelet coefficients. The experimental results show that the proposed method yields good denoising results.
Keywords :
AWGN; Bayes methods; Gaussian distribution; image denoising; maximum likelihood estimation; wavelet transforms; AWGN; Bayesian estimator; Bayesian image denoising method; Gaussian distribution; MAP estimation; additive white Gaussian noise; gamma density prior; maximum a posterior estimation; probabilistic modeling; shrinkage function; statistical parameter estimation; two-sided gamma random vector; wavelet coefficient; Boats; Estimation; Gamma random vectors and MAP estimation.; Two-Sided; spherically-contoured;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Technology (ICIT), 2012 IEEE International Conference on
Conference_Location :
Athens
Print_ISBN :
978-1-4673-0340-8
Type :
conf
DOI :
10.1109/ICIT.2012.6209965
Filename :
6209965
Link To Document :
بازگشت