DocumentCode :
22401
Title :
#FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media
Author :
Jian Zhao ; Nan Cao ; Zhen Wen ; Yale Song ; Yu-Ru Lin ; Collins, Christopher M.
Author_Institution :
Univ. of Toronto, Toronto, ON, Canada
Volume :
20
Issue :
12
fYear :
2014
fDate :
Dec. 31 2014
Firstpage :
1773
Lastpage :
1782
Abstract :
We present FluxFlow, an interactive visual analysis system for revealing and analyzing anomalous information spreading in social media. Everyday, millions of messages are created, commented, and shared by people on social media websites, such as Twitter and Facebook. This provides valuable data for researchers and practitioners in many application domains, such as marketing, to inform decision-making. Distilling valuable social signals from the huge crowd´s messages, however, is challenging, due to the heterogeneous and dynamic crowd behaviors. The challenge is rooted in data analysts´ capability of discerning the anomalous information behaviors, such as the spreading of rumors or misinformation, from the rest that are more conventional patterns, such as popular topics and newsworthy events, in a timely fashion. FluxFlow incorporates advanced machine learning algorithms to detect anomalies, and offers a set of novel visualization designs for presenting the detected threads for deeper analysis. We evaluated FluxFlow with real datasets containing the Twitter feeds captured during significant events such as Hurricane Sandy. Through quantitative measurements of the algorithmic performance and qualitative interviews with domain experts, the results show that the back-end anomaly detection model is effective in identifying anomalous retweeting threads, and its front-end interactive visualizations are intuitive and useful for analysts to discover insights in data and comprehend the underlying analytical model.
Keywords :
data analysis; data visualisation; decision making; learning (artificial intelligence); social networking (online); #FluxFlow; Facebook; Hurricane Sandy; Twitter; advanced machine learning algorithms; anomalous information behaviors; anomalous information spreading; anomalous retweeting threads; back-end anomaly detection model; crowd messages; data analyst capability; decision-making; deeper analysis; dynamic crowd behaviors; front-end interactive visualizations; interactive visual analysis system; quantitative measurements; social media Websites; social signals; Data visualization; Feature extraction; Instruction sets; Media; Message systems; Social network services; Twitter; Visual analytics; Retweeting threads; anomaly detection; information visualization; machine learning; social media; visual analytics;
fLanguage :
English
Journal_Title :
Visualization and Computer Graphics, IEEE Transactions on
Publisher :
ieee
ISSN :
1077-2626
Type :
jour
DOI :
10.1109/TVCG.2014.2346922
Filename :
6876013
Link To Document :
بازگشت