DocumentCode :
2242502
Title :
Conductance and convergence of Markov chains-a combinatorial treatment of expanders
Author :
Mihail, Milena
Author_Institution :
Harvard Univ., Cambridge, MA, USA
fYear :
1989
fDate :
30 Oct-1 Nov 1989
Firstpage :
526
Lastpage :
531
Abstract :
A direct combinatorial argument is given to bound the convergence rate of Markov chains in terms of their conductance (these are statements of the nature `random walks on expanders converge fast´). In addition to showing that the linear algebra in previous arguments for such results on time-reversible Markov chains was unnecessary, the direct analysis applies to general irreversible Markov chains
Keywords :
Markov processes; combinatorial argument; conductance; convergence rate; expanders; general irreversible Markov chains; linear algebra; random walks; time-reversible Markov chains; Convergence; Eigenvalues and eigenfunctions; Graph theory; Linear algebra; Sampling methods; State-space methods; Symmetric matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Foundations of Computer Science, 1989., 30th Annual Symposium on
Conference_Location :
Research Triangle Park, NC
Print_ISBN :
0-8186-1982-1
Type :
conf
DOI :
10.1109/SFCS.1989.63529
Filename :
63529
Link To Document :
بازگشت