DocumentCode :
2250116
Title :
A hidden Markov filtering approach to multiple change-point models
Author :
Lai, Tze Leung ; Xing, Haipeng
Author_Institution :
Dept. of Stat., Stanford Univ., Palo Alto, CA, USA
fYear :
2008
fDate :
9-11 Dec. 2008
Firstpage :
1914
Lastpage :
1919
Abstract :
We describe a hidden Markov modeling approach to multiple change-points that has attractive computational and statistical properties. This approach yields explicit recursive filters and smoothers for estimating the piecewise constant parameters. Applications to array-CGH data analysis in genetic studies of cancer and to on-line detection, estimation and adaptive control of stochastic systems whose parameters may undergo occasional changes are given to illustrate the versatility of the proposed methodology.
Keywords :
hidden Markov models; piecewise constant techniques; recursive filters; smoothing methods; statistical analysis; adaptive control; array-CGH data analysis; cancer; computational property; estimation; genetic study; hidden Markov filtering approach; multiple change-point models; online detection; piecewise constant parameters; recursive filters; smoothers; statistical property; stochastic systems; Adaptive arrays; Adaptive control; Cancer detection; Data analysis; Filtering; Filters; Genetics; Hidden Markov models; Recursive estimation; Yield estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2008. CDC 2008. 47th IEEE Conference on
Conference_Location :
Cancun
ISSN :
0191-2216
Print_ISBN :
978-1-4244-3123-6
Electronic_ISBN :
0191-2216
Type :
conf
DOI :
10.1109/CDC.2008.4739184
Filename :
4739184
Link To Document :
بازگشت