Title :
KL-divergence kernel regression for non-Gaussian fingerprint based localization
Author :
Mirowski, Piotr ; Steck, Harald ; Whiting, Philip ; Palaniappan, Ravishankar ; MacDonald, Michael ; Ho, Tin Kam
Author_Institution :
Bell Labs., Alcatel-Lucent, Murray Hill, NJ, USA
Abstract :
Various methods have been developed for indoor localization using WLAN signals. Algorithms that fingerprint the Received Signal Strength Indication (RSSI) of WiFi for different locations can achieve tracking accuracies of the order of a few meters. RSSI fingerprinting suffers though from two main limitations: first, as the signal environment changes, so does the fingerprint database, which requires regular updates; second, it has been reported that, in practice, certain devices record more complex (e.g bimodal) distributions of WiFi signals, precluding algorithms based on the mean RSSI. In this article, we propose a simple methodology that takes into account the full distribution for computing similarities among fingerprints using Kullback-Leibler divergence, and that performs localization through kernel regression. Our method provides a natural way of smoothing over time and trajectories. Moreover, we propose unsupervised KL-divergence-based recalibration of the training fingerprints. Finally, we apply our method to work with histograms of WiFi connections to access points, ignoring RSSI distributions, and thus removing the need for recalibration. We demonstrate that our results outperform nearest neighbors or Kalman and Particle Filters, achieving up to 1m accuracy in office environments. We also show that our method generalizes to non-Gaussian RSSI distributions.
Keywords :
Kalman filters; calibration; particle filtering (numerical methods); regression analysis; signal detection; wireless LAN; KL-divergence kernel regression; Kalman filters; Kullback-Leibler divergence; RSSI fingerprinting; WiFi; fingerprint database; indoor localization; non-Gaussian fingerprint based localization; particle filters; received signal strength indication; training fingerprints; wireless LAN; Accuracy; Databases; Fingerprint recognition; Histograms; Kernel; Signal to noise ratio; Training; Distributions; Fingerprinting; Kernel Methods; Localization; Signal Strength; WiFi;
Conference_Titel :
Indoor Positioning and Indoor Navigation (IPIN), 2011 International Conference on
Conference_Location :
Guimaraes
Print_ISBN :
978-1-4577-1805-2
Electronic_ISBN :
978-1-4577-1803-8
DOI :
10.1109/IPIN.2011.6071928