DocumentCode :
2258212
Title :
Further results on cosets of convolutional codes with short maximum zero-run lengths
Author :
Hole, Kjell Jørgen ; Ytrehus, Øyvind
Author_Institution :
Dept. of Inf., Bergen Univ., Norway
fYear :
1995
fDate :
17-22 Sep 1995
Firstpage :
146
Abstract :
We study the maximum zero-run length, Lmax, of cosets of convolutional codes, and show that an associated block subcode to a large extent determines Lmax. A communication system or storage system may use a coset of a binary convolutional code for both symbol synchronization and error control. To achieve symbol synchronization, the coset must have a short maximum zero-run length, L (max). The shortest values of Lmax can be found in the class of convolutional codes of rate (n-r)/n for which at least one row of a minimal parity check matrix is nonpolynomial. We focus on this class
Keywords :
binary sequences; convolutional codes; matrix algebra; runlength codes; synchronisation; binary convolutional code; block subcode; code coset; code rate; communication system; error control; minimal parity check matrix; short maximum zero-run lengths; storage system; symbol synchronization; Block codes; Contracts; Convolutional codes; Councils; Error correction; Hamming weight; Informatics; Mercury (metals); Parity check codes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 1995. Proceedings., 1995 IEEE International Symposium on
Conference_Location :
Whistler, BC
Print_ISBN :
0-7803-2453-6
Type :
conf
DOI :
10.1109/ISIT.1995.531350
Filename :
531350
Link To Document :
بازگشت