DocumentCode :
2259920
Title :
Tracking for a CNN guided robot
Author :
Pazienza, Giovanni Egidio ; Giangrossi, Pasqualino ; Tortella, Sebastià ; Balsi, Marco ; Vilasís-Cardona, Xavier
Author_Institution :
Departament d\´\´Electronica, Enginyeria i Arquitcctura LaSalle, Univ. "Ramon Llull", Barcelona, Spain
Volume :
3
fYear :
2005
fDate :
28 Aug.-2 Sept. 2005
Abstract :
Cellular neural networks (CNNs) are well suited for image processing due to the possibility of a parallel computation. In this paper we present an algorithm for tracking using CNNs. We successfully tested the algorithm on an autonomous robot guided using only real-time visual feedback; the image processing is performed entirely by a CNN system embedded in a DSP.
Keywords :
cellular neural nets; digital signal processing chips; image processing; mobile robots; real-time systems; tracking; CNN guided robot; autonomous robot; cellular neural networks; digital signal processing; image processing; parallel computation; real-time visual feedback; Cellular neural networks; Computer networks; Concurrent computing; Digital signal processing; Image processing; Neurofeedback; Performance evaluation; Real time systems; Robots; System testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuit Theory and Design, 2005. Proceedings of the 2005 European Conference on
Print_ISBN :
0-7803-9066-0
Type :
conf
DOI :
10.1109/ECCTD.2005.1523064
Filename :
1523064
Link To Document :
بازگشت