DocumentCode
2264409
Title
Design of variable fractional order differentiator using expansion of hyperbolic function
Author
Chien-Cheng Tseng ; Su-Ling Lee
Author_Institution
Dept. of Comput. & Commun. Eng., Nat. Kaohsiung First Univ. of Sci. & Tech., Kaohsiung, Taiwan
fYear
2011
fDate
Aug. 29 2011-Sept. 2 2011
Firstpage
749
Lastpage
753
Abstract
In this paper, the design of variable fractional order differentiator (VFOD) using expansion of hyperbolic function is presented. First, the ideal frequency response is decomposed into the sum of hyperbolic cosine and sine functions. Then, the power series expansions of hyperbolic functions are used to implement VFOD. The proposed VFOD requires less storage requirement of filter coefficients and implementation complexity than the conventional Farrow structure at cost of longer filter delay. Finally, the numerical examples are demonstrated to show the effectiveness of the proposed design approaches.
Keywords
filtering theory; frequency response; hyperbolic equations; Farrow structure; VFOD; filter coefficients; filter delay; frequency response; hyperbolic cosine function; hyperbolic function expansion; power series expansions; sine functions; variable fractional order differentiator design; Delays; Design methodology; Equations; Filtering theory; Finite impulse response filters; Frequency response;
fLanguage
English
Publisher
ieee
Conference_Titel
Signal Processing Conference, 2011 19th European
Conference_Location
Barcelona
ISSN
2076-1465
Type
conf
Filename
7073884
Link To Document