DocumentCode :
2264444
Title :
Pattern theory paradigm for system design
Author :
Ross, Timothy D. ; Axtell, Mark L. ; Noviskey, Michael J. ; Gadd, David A.
Author_Institution :
Wright Lab. & Veda Inc., USA
fYear :
1993
fDate :
16-18 Aug 1993
Firstpage :
721
Abstract :
A recent convergence of ideas from logic minimization, computational complexity, and machine learning theory has resulted in a promising new approach to robust pattern finding, called Pattern Theory. This paper demonstrates the robustness of this approach using experimental and theoretical considerations. The results of experiments in two applications, machine learning and image processing, are summarized
Keywords :
computational complexity; image processing; learning (artificial intelligence); minimisation; decomposed function cardinality; image processing; machine learning; pattern theory paradigm; robust pattern finding; system design; Circuit testing; Combinational circuits; Computational complexity; Convergence; Digital-to-frequency converters; Image processing; Machine learning; Minimization; Programmable logic arrays; Robustness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 1993., Proceedings of the 36th Midwest Symposium on
Conference_Location :
Detroit, MI
Print_ISBN :
0-7803-1760-2
Type :
conf
DOI :
10.1109/MWSCAS.1993.343180
Filename :
343180
Link To Document :
بازگشت