• DocumentCode
    226702
  • Title

    Lattice computing (LC) meta-representation for pattern classification

  • Author

    Papakostas, George A. ; Kaburlasos, Vassilis G.

  • Author_Institution
    Dept. of Comput. & Inf. Eng., Eastern Macedonia & Thrace Inst. of Technol., Kavala, Greece
  • fYear
    2014
  • fDate
    6-11 July 2014
  • Firstpage
    39
  • Lastpage
    44
  • Abstract
    This paper compares two alternative feature data meta-representations using Intervals´ Numbers (INs) in the context of the Minimum Distance Classifier (MDC) model. The first IN meta-representation employs one IN per feature vector, whereas the second IN meta-representation employs one IN per feature per class. Comparative classification experiments with the standard minimum distance classifier (MDC) on two benchmark classification problems, regarding face/facial expression recognition, demonstrate the superiority of the aforementioned second IN meta-representation. This superiority is attributed to an IN´s capacity to represent discriminative, all-order data statistics in a population of features.
  • Keywords
    face recognition; image classification; image representation; IN meta-representation; IN per feature per class; IN per feature vector; LC meta-representation; MDC; MDC model; all-order data statistics; benchmark classification problems; face-facial expression recognition; feature data meta-representations; interval numbers; lattice computing; minimum distance classifier model; pattern classification; Lattices; Pattern classification; Prototypes; Sociology; Statistics; Support vector machine classification; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on
  • Conference_Location
    Beijing
  • Print_ISBN
    978-1-4799-2073-0
  • Type

    conf

  • DOI
    10.1109/FUZZ-IEEE.2014.6891674
  • Filename
    6891674