DocumentCode :
226744
Title :
An evolutionary approach to improve efficiency for solving the electric dispatch problem
Author :
Marcelino, Carolina G. ; Wanner, Elizabeth F. ; Almeida, Paulo E. M.
Author_Institution :
Intell. Syst. Lab. - LSI, CEFET MG - Brasil, Belo Horizonte, Brazil
fYear :
2014
fDate :
9-12 Dec. 2014
Firstpage :
163
Lastpage :
170
Abstract :
The consumption of electric energy for general supply of a country is increasing over the years. In Brazil, energy demand grows, on average, 5% per year and the power source is predominantly hydroelectric. Many of the power plants installed in Brazil do not operate efficiently, from the water consumption point of view. The normal mode of operation (NMO) equally divides power demand between existing generation units of a power plant, regardless if this individual demand represents or not a good operation point for each unit. The unit dispatch problem is defined as the attribution of operational values to each unit inside a power plant, given some criteria to be met. In this context, an optimal solution for the dispatch problem means production of electricity with minimal water consumption. This work proposes a multi-objective approach to solve the electric dispatch problem in which the objective functions considered are: maximization of hydroelectric productivity function and minimization of the distance between NMO and optimized control mode (OCM). The proposed approach is applied to a large hydroelectric plant operating in Brazil. Results indicate that it is possible to identify operating points near NMO that present productivity efficiency, saving in one month about 14.6 million m3 of water. Moreover, higher productivity can be achieved with smaller differences between NMO and OCM in lower power demands. Finally, it is worth to mention that the simplicity and the nature of the proposed approach indicate that it can be easily applied to studies of similar power plants, and thus can potentially be used to provide further economy on water consumption to larger extents of the hydroelectric production.
Keywords :
evolutionary computation; hydroelectric power stations; power generation dispatch; Brazil; NMO; OCM; distance minimization; electric dispatch problem solving; electric energy consumption; energy demand; evolutionary approach; hydroelectric plant; hydroelectric power source; hydroelectric productivity function maximization; multiobjective approach; normal mode of operation; optimized control mode; power plant generation unit; productivity efficiency; unit dispatch problem; water consumption; Genetic algorithms; Linear programming; Mathematical model; Optimization; Power generation; Production; Water resources; Multi-objective Optimization; NSGA-II; Sustainability; Water Consumption;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence for Engineering Solutions (CIES), 2014 IEEE Symposium on
Conference_Location :
Orlando, FL
Type :
conf
DOI :
10.1109/CIES.2014.7011846
Filename :
7011846
Link To Document :
بازگشت