DocumentCode :
2267808
Title :
Articulatory parameter generation using unsupervised Hidden Markov Models
Author :
Lachambre, Helene ; Koenig, Lionel ; Andre-Obrecht, Regine
Author_Institution :
IRIT, Univ. de Toulouse, Narbonne, France
fYear :
2011
fDate :
Aug. 29 2011-Sept. 2 2011
Firstpage :
456
Lastpage :
460
Abstract :
We present an acoustic-to-articulatory inversion method based on unsupervised Hidden Markov Models. A global HMM is first trained from the acoustic and articulatory data. This model is then split in two sub-models which represent the acoustic part and the articulatory part of the data. These two sub-models are linked through the fact that they are deduced from the same global model.
Keywords :
acoustic signal processing; decoding; estimation theory; hidden Markov models; mean square error methods; speech processing; HMM; RMS error; acoustic vector sequence decoding; acoustic-to-articulatory inversion method; articulatory parameter generation; unsupervised hidden Markov model; Acoustics; Art; Hidden Markov models; Speech; Training; Trajectory; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing Conference, 2011 19th European
Conference_Location :
Barcelona
ISSN :
2076-1465
Type :
conf
Filename :
7074035
Link To Document :
بازگشت