Title :
ISAR imaging using parametric L0-norm minimization
Author :
Li, Gang ; Wang, Xiqin ; Xia, Xiang-Gen
Author_Institution :
Dept. of Electron. Eng., Tsinghua Univ., Beijing, China
Abstract :
We present a sparsity-driven algorithm of inverse synthetic aperture radar (ISAR) imaging. Based on the parametric sparse representation of the received ISAR signal, the problem of ISAR image formation is converted into the joint estimation of the target rotation rate and the sparse power distribution in the spatial domain. This goal is achieved by parametric L0-norm minimization, which ensures the sparsest ISAR image.
Keywords :
radar imaging; synthetic aperture radar; ISAR imaging; ISAR signal; inverse synthetic aperture radar; parametric L0-norm minimization; sparse representation; sparsity-driven algorithm; Estimation; Imaging; Matching pursuit algorithms; Minimization; Radar imaging; Time frequency analysis;
Conference_Titel :
Radar Conference (RADAR), 2012 IEEE
Conference_Location :
Atlanta, GA
Print_ISBN :
978-1-4673-0656-0
DOI :
10.1109/RADAR.2012.6212177