DocumentCode :
2267989
Title :
ISAR imaging using parametric L0-norm minimization
Author :
Li, Gang ; Wang, Xiqin ; Xia, Xiang-Gen
Author_Institution :
Dept. of Electron. Eng., Tsinghua Univ., Beijing, China
fYear :
2012
fDate :
7-11 May 2012
Abstract :
We present a sparsity-driven algorithm of inverse synthetic aperture radar (ISAR) imaging. Based on the parametric sparse representation of the received ISAR signal, the problem of ISAR image formation is converted into the joint estimation of the target rotation rate and the sparse power distribution in the spatial domain. This goal is achieved by parametric L0-norm minimization, which ensures the sparsest ISAR image.
Keywords :
radar imaging; synthetic aperture radar; ISAR imaging; ISAR signal; inverse synthetic aperture radar; parametric L0-norm minimization; sparse representation; sparsity-driven algorithm; Estimation; Imaging; Matching pursuit algorithms; Minimization; Radar imaging; Time frequency analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Radar Conference (RADAR), 2012 IEEE
Conference_Location :
Atlanta, GA
ISSN :
1097-5659
Print_ISBN :
978-1-4673-0656-0
Type :
conf
DOI :
10.1109/RADAR.2012.6212177
Filename :
6212177
Link To Document :
بازگشت