• DocumentCode
    2268424
  • Title

    Minimal, minimal-basic, and locally invertible convolutional encoders

  • Author

    Dholakia, Ajay ; Bitzer, Donald L. ; Koorapaty, Havish ; Vouk, Mladen A.

  • Author_Institution
    Dept. of Comput. Sci., North Carolina State Univ., Raleigh, NC, USA
  • fYear
    1995
  • fDate
    17-22 Sep 1995
  • Firstpage
    164
  • Abstract
    Rate-k/n locally invertible convolutional encoders are defined. It is shown that a basic locally invertible encoder is minimal-basic. Local invertibility is used to re-derive Forney´s (1973) upper and lower bounds on the maximum number of consecutive all zero branches in a convolutional codeword. A time-domain test for minimality of an encoder is given
  • Keywords
    convolutional codes; time-domain analysis; consecutive all zero branches; convolutional codeword; locally invertible convolutional encoders; lower bounds; minimal encoder; minimal-basic encoder; rate-k/n encoders; time-domain minimality test; upper bounds; Character generation; Convolutional codes; Linear algebra; Polynomials; Testing; Time domain analysis;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory, 1995. Proceedings., 1995 IEEE International Symposium on
  • Conference_Location
    Whistler, BC
  • Print_ISBN
    0-7803-2453-6
  • Type

    conf

  • DOI
    10.1109/ISIT.1995.531513
  • Filename
    531513