DocumentCode
2268424
Title
Minimal, minimal-basic, and locally invertible convolutional encoders
Author
Dholakia, Ajay ; Bitzer, Donald L. ; Koorapaty, Havish ; Vouk, Mladen A.
Author_Institution
Dept. of Comput. Sci., North Carolina State Univ., Raleigh, NC, USA
fYear
1995
fDate
17-22 Sep 1995
Firstpage
164
Abstract
Rate-k/n locally invertible convolutional encoders are defined. It is shown that a basic locally invertible encoder is minimal-basic. Local invertibility is used to re-derive Forney´s (1973) upper and lower bounds on the maximum number of consecutive all zero branches in a convolutional codeword. A time-domain test for minimality of an encoder is given
Keywords
convolutional codes; time-domain analysis; consecutive all zero branches; convolutional codeword; locally invertible convolutional encoders; lower bounds; minimal encoder; minimal-basic encoder; rate-k/n encoders; time-domain minimality test; upper bounds; Character generation; Convolutional codes; Linear algebra; Polynomials; Testing; Time domain analysis;
fLanguage
English
Publisher
ieee
Conference_Titel
Information Theory, 1995. Proceedings., 1995 IEEE International Symposium on
Conference_Location
Whistler, BC
Print_ISBN
0-7803-2453-6
Type
conf
DOI
10.1109/ISIT.1995.531513
Filename
531513
Link To Document