• DocumentCode
    226903
  • Title

    T-S fuzzy affine linear modeling algorithm by possibilistic c-regression models clustering algorithm

  • Author

    Chung-Chun Kung ; Hong-Chi Ku

  • Author_Institution
    Dept. of Electr. Eng., Tatung Univ., Taipei, Taiwan
  • fYear
    2014
  • fDate
    6-11 July 2014
  • Firstpage
    1242
  • Lastpage
    1247
  • Abstract
    This paper presents a Takagi-Sugeno (T-S) fuzzy affine linear modeling algorithm by the possibilistic c-regression models (PCRM) clustering algorithm. We apply the PCRM to partition the given input-output data into hyper-plane-shaped clusters (regression models). We choose the suitable number of cluster by the cluster validity criterion and then to construct the T-S fuzzy affine linear model. A simulation example is provided to demonstrate the effectiveness of the T-S fuzzy affine linear modeling algorithm.
  • Keywords
    fuzzy set theory; pattern clustering; possibility theory; regression analysis; PCRM clustering algorithm; T-S fuzzy affine linear modeling algorithm; Takagi-Sugeno fuzzy affine linear modeling algorithm; hyper-plane-shaped clusters; input-output data; possibilistic c-regression model clustering algorithm; Clustering algorithms; Conferences; Data models; Fuzzy systems; Nonlinear systems; Partitioning algorithms; Takagi-Sugeno model; Takagi-Sugeno (T-S) fuzzy model; affine linear; cluster validity criterion; possibilistic c-regression models (PCRM);
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on
  • Conference_Location
    Beijing
  • Print_ISBN
    978-1-4799-2073-0
  • Type

    conf

  • DOI
    10.1109/FUZZ-IEEE.2014.6891768
  • Filename
    6891768