• DocumentCode
    22694
  • Title

    Informed Spatial Filtering for Sound Extraction Using Distributed Microphone Arrays

  • Author

    Taseska, Maja ; Habets, Emanuel A. P.

  • Author_Institution
    Int. Audio Labs. Erlangen, Univ. of Erlangen-Nuremberg, Erlangen, Germany
  • Volume
    22
  • Issue
    7
  • fYear
    2014
  • fDate
    Jul-14
  • Firstpage
    1195
  • Lastpage
    1207
  • Abstract
    Hands-free acquisition of speech is required in many human-machine interfaces and communication systems. The signals received by integrated microphones contain a desired speech signal, spatially coherent interfering signals, and background noise. In order to enhance the desired speech signal, state-of-the-art techniques apply data-dependent spatial filters which require the second order statistics (SOS) of the desired signal, the interfering signals and the background noise. As the number of sources and the reverberation time increase, the estimation accuracy of the SOS deteriorates, often resulting in insufficient noise and interference reduction. In this paper, a signal extraction framework with distributed microphone arrays is developed. An expectation maximization (EM)-based algorithm detects the number of coherent speech sources and estimates source clusters using time-frequency (TF) bin-wise position estimates. Subsequently, the second order statistics (SOS) are estimated using bin-wise speech presence probability (SPP) and a source probability for each source. Finally, a desired source is extracted using a minimum variance distortionless response (MVDR) filter, a multichannel Wiener filter (MWF) and a parametric multichannel Wiener filter (PMWF). The same framework can be employed for source separation, where a spatial filter is computed for each source considering the remaining sources as interferers. Evaluation using simulated and measured data demonstrates the effectiveness of the framework in estimating the number of sources, clustering, signal enhancement, and source separation.
  • Keywords
    Wiener filters; expectation-maximisation algorithm; microphone arrays; source separation; spatial filters; background noise; data dependent spatial filters; distributed microphone arrays; expectation maximization; hands free acquisition; informed spatial filtering; minimum variance distortionless response filter; parametric multichannel Wiener filter; second order statistics; signal enhancement; sound extraction; source separation; spatially coherent interfering signals; speech presence probability; speech signal; Clustering algorithms; Estimation; Microphone arrays; Noise; Speech; Speech processing; Distributed arrays; EM algorithm; PSD matrix estimation; source extraction; spatial filtering;
  • fLanguage
    English
  • Journal_Title
    Audio, Speech, and Language Processing, IEEE/ACM Transactions on
  • Publisher
    ieee
  • ISSN
    2329-9290
  • Type

    jour

  • DOI
    10.1109/TASLP.2014.2327294
  • Filename
    6822539