Title :
Testing quaternion properness: Generalized likelihood ratios and locally most powerful invariants
Author :
Via, Javier ; Vielva, Luis
Author_Institution :
Dept. of Commun. Eng., Univ. of Cantabria, Santander, Spain
fDate :
Aug. 29 2011-Sept. 2 2011
Abstract :
This paper considers the problem of determining whether a quaternion random vector is proper or not, which is an important problem because the structure of the optimal linear processing depends on the specific kind of properness. In particular, we focus on the Gaussian case and consider the two main kinds of quaternion properness, which yields three different binary hypothesis testing problems. The testing problems are solved by means of the generalized likelihood ratio tests (GLRTs) and the locally most powerful invariant tests (LMPITs), which can be derived even without requiring an explicit expression for the maximal invariant statistics. Some simulation examples illustrate the performance of the proposed tests, which allows us to conclude that, for moderate sample sizes, it is advisable to use the LMPITs.
Keywords :
Gaussian processes; signal processing; statistical testing; GLRTs; LMPITs; binary hypothesis testing problems; generalized likelihood ratios; locally most powerful invariant tests; maximal invariant statistics; optimal linear processing; quaternion properness testing; quaternion random vector; Correlation; Covariance matrices; Eigenvalues and eigenfunctions; Iron; Quaternions; Testing; Vectors;
Conference_Titel :
Signal Processing Conference, 2011 19th European
Conference_Location :
Barcelona