DocumentCode :
2275883
Title :
Sector rotation under partial information
Author :
Keel, Simon ; Herzog, Florian ; Geering, Hans P. ; Schumann, Lorenz M.
Author_Institution :
Meas. & Control Lab., ETH Zurich
fYear :
2006
fDate :
14-16 June 2006
Abstract :
In the area of optimal asset allocation, the parameters of the model are often assumed to be deterministic. This is not a realistic assumption since most parameters are not known exactly and therefore, have to be estimated. We consider investment opportunities which are modelled as local geometric Brownian motions. The drift terms of the risky assets are assumed to be affine functions of factors. These factors themselves may be stochastic processes. The investor is assumed to have constant relative risk aversion. The optimal asset allocation under partial information is derived by transforming the problem into a full-information problem, where the solution is well known. The analytical result is empirically tested in a real-world application. In our case, we consider the optimal management of a sector rotation fund
Keywords :
Brownian motion; cost optimal control; infinite horizon; stochastic processes; drift terms; geometric Brownian motions; investment opportunities; optimal asset allocation; optimal sector rotation fund management; partial information; risk aversion; risky assets; stochastic processes; Area measurement; Asset management; Covariance matrix; Differential equations; Dynamic programming; Investments; Laboratories; Optimal control; Solid modeling; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2006
Conference_Location :
Minneapolis, MN
Print_ISBN :
1-4244-0209-3
Electronic_ISBN :
1-4244-0209-3
Type :
conf
DOI :
10.1109/ACC.2006.1656388
Filename :
1656388
Link To Document :
بازگشت