DocumentCode :
2281823
Title :
Designing multiple inverter systems with evolutionary multiobjective optimisation
Author :
Berry, Adam ; Cornforth, David
Author_Institution :
Energy Technol. Div., CSIRO, Mayfield West, NSW, Australia
fYear :
2009
fDate :
20-24 Sept. 2009
Firstpage :
3391
Lastpage :
3398
Abstract :
Given the growth of microgrids and decentralised power, heterogeneous multi-inverter systems are becoming increasingly prevalent. Despite this, little is known about the interactive effects of such systems and how best to control them. In response, this work examines the use of traditional droop control and a contemporary multiobjective optimisation technique for automatically adapting parameters for a specified load profile in a heterogeneous ten-inverter system. Results indicate that the multiobjective approach offers a range of parameter sets that each outperform the manual droop settings with respect to both voltage sag and ripple objectives.
Keywords :
evolutionary computation; invertors; optimisation; contemporary multiobjective optimisation technique; droop control; evolutionary multiobjective optimisation; heterogeneous multiinverter systems; microgrids; voltage sag; Artificial Intelligence; Cogeneration; Industrial Power Systems; Interconnected Power Systems; Power Generation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Energy Conversion Congress and Exposition, 2009. ECCE 2009. IEEE
Conference_Location :
San Jose, CA
Print_ISBN :
978-1-4244-2893-9
Electronic_ISBN :
978-1-4244-2893-9
Type :
conf
DOI :
10.1109/ECCE.2009.5316486
Filename :
5316486
Link To Document :
بازگشت