DocumentCode :
2283606
Title :
Illustrative Design Space Studies with Microarchitectural Regression Models
Author :
Lee, Benjamin C. ; Brooks, David M.
Author_Institution :
Div. of Eng. & Appl. Sci., Harvard Univ., Cambridge, MA
fYear :
2007
fDate :
10-14 Feb. 2007
Firstpage :
340
Lastpage :
351
Abstract :
We apply a scalable approach for practical, comprehensive design space evaluation and optimization. This approach combines design space sampling and statistical inference to identify trends from a sparse simulation of the space. The computational efficiency of sampling and inference enables new capabilities in design space exploration. We illustrate these capabilities using performance and power models for three studies of a 260,000 point design space: (1) Pareto frontier analysis, (2) pipeline depth analysis, and (3) multiprocessor heterogeneity analysis. For each study, we provide an assessment of predictive error and sensitivity of observed trends to such error. We construct Pareto frontiers and find predictions for Pareto optima are no less accurate than those for the broader design space. We reproduce and enhance prior pipeline depth studies, demonstrating constrained sensitivity studies may not generalize when many other design parameters are held at constant values. Lastly, we identify efficient heterogeneous core designs by clustering per benchmark optimal architectures. Collectively, these studies motivate the application of techniques in statistical inference for more effective use of modern simulator infrastructure
Keywords :
Pareto optimisation; logic design; microprocessor chips; regression analysis; Pareto frontier analysis; Pareto optima; benchmark optimal architectures; design space evaluation; design space optimization; design space sampling; microarchitectural regression models; multiprocessor heterogeneity analysis; pipeline depth analysis; statistical inference; Computational modeling; Costs; Design optimization; Microarchitecture; Pareto analysis; Performance analysis; Pipelines; Predictive models; Sampling methods; Space exploration;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
High Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th International Symposium on
Conference_Location :
Scottsdale, AZ
Print_ISBN :
1-4244-0805-9
Electronic_ISBN :
1-4244-0805-9
Type :
conf
DOI :
10.1109/HPCA.2007.346211
Filename :
4147674
Link To Document :
بازگشت