DocumentCode :
2286219
Title :
Decentralized Multi-sensor Data Fusion Algorithm Using Information Filter
Author :
Zhang, Chaokun ; Wang, Huiying
Author_Institution :
Dept. of Comput. Sci. & Technol., Hebei Normal Univ., Shijiazhuang, China
Volume :
1
fYear :
2010
fDate :
13-14 March 2010
Firstpage :
890
Lastpage :
893
Abstract :
Data fusion algorithms have a very wide range of applications in some fields. But, with the growing sensor numbers in multi-sensor target tracking systems, data fusion algorithms using conventional Kalman filter meet problems such as heavy computational burden and poor robustness. Decentralized data fusion algorithms using information filter provide a way of avoiding traditional fusion algorithms´ limitations. The work described in this paper aims to develop a decentralized fusion algorithm for multi-sensor target tracking problems. The basic principle of the information filter is introduced. A decentralized data fusion algorithm using information filter is developed. This algorithm is then demonstrated on a multi-senor tracking example.
Keywords :
Kalman filters; information filters; sensor fusion; target tracking; conventional Kalman filter; decentralized multisensor data fusion algorithm; information filter; multisensor target tracking systems; Automation; Information filters; Mechatronics; Military computing; Robustness; Scalability; Sensor fusion; Sensor systems; State estimation; Target tracking; Decentralized Data Fusion; Information Filter; Multi-Sensor Target Tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Measuring Technology and Mechatronics Automation (ICMTMA), 2010 International Conference on
Conference_Location :
Changsha City
Print_ISBN :
978-1-4244-5001-5
Electronic_ISBN :
978-1-4244-5739-7
Type :
conf
DOI :
10.1109/ICMTMA.2010.506
Filename :
5459075
Link To Document :
بازگشت