DocumentCode :
2286272
Title :
A hierarchical neural network-based approach to VIRGO noise identification
Author :
Acernese, F. ; Barone, F. ; Eleuteri, A. ; Garufi, F. ; Milano, L. ; Tagliaferri, R.
Author_Institution :
Fac. di Sci. MM. FF. NN., Salerno Univ., Italy
Volume :
6
fYear :
2000
fDate :
2000
Firstpage :
253
Abstract :
In this paper a hierarchical neural network-based approach is presented to identify the noise in the VIRGO experiment to detect gravitational waves by means of a laser interferometer
Keywords :
gravitational waves; light interferometers; neural nets; pattern classification; physics computing; signal processing; VIRGO noise; gravitational waves; hierarchical neural network; laser interferometer; signal processing; Adaptive signal detection; Computer networks; Instruments; Laser noise; Neural networks; Noise figure; Nonlinear dynamical systems; Signal processing; Signal to noise ratio; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on
Conference_Location :
Como
ISSN :
1098-7576
Print_ISBN :
0-7695-0619-4
Type :
conf
DOI :
10.1109/IJCNN.2000.859405
Filename :
859405
Link To Document :
بازگشت