DocumentCode :
2288004
Title :
Spectral clustering of linear subspaces for motion segmentation
Author :
Lauer, Fabien ; Schnörr, Christoph
Author_Institution :
Heidelberg Collaboratory for Image Process., Univ. of Heidelberg, Heidelberg, Germany
fYear :
2009
fDate :
Sept. 29 2009-Oct. 2 2009
Firstpage :
678
Lastpage :
685
Abstract :
This paper studies automatic segmentation of multiple motions from tracked feature points through spectral embedding and clustering of linear subspaces. We show that the dimension of the ambient space is crucial for separability, and that low dimensions chosen in prior work are not optimal. We suggest lower and upper bounds together with a data-driven procedure for choosing the optimal ambient dimension. Application of our approach to the Hopkins155 video benchmark database uniformly outperforms a range of state-of-the-art methods both in terms of segmentation accuracy and computational speed.
Keywords :
image motion analysis; image segmentation; image sequences; pattern clustering; Hopkins155 video benchmark database; linear subspace spectral clustering; lower bounds; motion segmentation; spectral clustering; spectral embedding; upper bounds; video sequences; Clustering algorithms; Computer vision; Image processing; Image segmentation; Motion analysis; Motion segmentation; Spatial databases; Tracking; Upper bound; Video sequences;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision, 2009 IEEE 12th International Conference on
Conference_Location :
Kyoto
ISSN :
1550-5499
Print_ISBN :
978-1-4244-4420-5
Electronic_ISBN :
1550-5499
Type :
conf
DOI :
10.1109/ICCV.2009.5459173
Filename :
5459173
Link To Document :
بازگشت