Title :
Comparative study of k-means and mini batch k-means clustering algorithms in android malware detection using network traffic analysis
Author :
Feizollah, Ali ; Anuar, Nor Badrul ; Salleh, Rosli ; Amalina, Fairuz
Author_Institution :
Comput. Syst. & Technol. Dept., Univ. of Malaya, Kuala Lumpur, Malaysia
Abstract :
This paper evaluates performance of two clustering algorithms, namely k-means and mini batch k-means, in the Android malware detection. Network traffic generated by the Android applications, normal and malicious, is analyzed for detection purpose. We have used MalGenome data sample for this work to build the dataset. We chose 800 samples out of 1260 Android malware samples. In addition, we collected numerous normal applications from the official Android market. The results show that mini batch k-means algorithm performs better than k-means algorithm in the Android malware detection.
Keywords :
Android (operating system); invasive software; pattern clustering; telecommunication traffic; Android; MalGenome; malware detection; mini batch k-means clustering algorithms; network traffic analysis; Accuracy; Androids; Clustering algorithms; Humanoid robots; Malware; Telecommunication traffic; Android; clustering; dynamic analysis; malware;
Conference_Titel :
Biometrics and Security Technologies (ISBAST), 2014 International Symposium on
Conference_Location :
Kuala Lumpur
Print_ISBN :
978-1-4799-6443-7
DOI :
10.1109/ISBAST.2014.7013120