DocumentCode :
2289628
Title :
Using Exact Locality Sensitive Mapping to Group and Detect Audio-Based Cover Songs
Author :
Yu, Yi ; Downie, J. Stephen ; Moerchen, Fabian ; Chen, Lei ; Joe, Kazuki
Author_Institution :
Dept. of Inf. & Comput. Sci., Nara Women´´s Univ., Nara
fYear :
2008
fDate :
15-17 Dec. 2008
Firstpage :
302
Lastpage :
309
Abstract :
Cover song detection is becoming a very hot research topic when plentiful personal music recordings or performance are released on the Internet. A nice cover song recognizer helps us group and detect cover songs to improve the searching experience. The traditional detection is to match two musical audio sequences by exhaustive pairwise comparisons. Different from the existing work, our aim is to generate a group of concatenated feature sets based on regression modeling and arrange them by indexing-based approximate techniques to avoid complicated audio sequence comparisons. We mainly focus on using exact locality sensitive mapping (ELSM) to join the concatenated feature sets and soft hash values. Similarity-invariance among audio sequence comparison is applied to define an optimal combination of several audio features. Soft hash values are pre-calculated to help locate searching range more accurately. Furthermore, we implement our algorithms in analyzing the real audio cover songs and grouping and detecting a batch of relevant cover songs embedded in large audio datasets.
Keywords :
audio signal processing; music; regression analysis; Internet; audio-based cover song detection; exact locality sensitive mapping; exhaustive pairwise comparisons; indexing-based approximate techniques; musical audio sequences; personal music recordings; regression modeling; soft hash values; Algorithm design and analysis; Audio recording; Computer science; Concatenated codes; Educational institutions; Information science; Internet; Libraries; Music information retrieval; USA Councils; Exact locality sensitive hashing/mapping; cover songs; group and detect; semantic audio summarization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multimedia, 2008. ISM 2008. Tenth IEEE International Symposium on
Conference_Location :
Berkeley, CA
Print_ISBN :
978-0-7695-3454-1
Electronic_ISBN :
978-0-7695-3454-1
Type :
conf
DOI :
10.1109/ISM.2008.18
Filename :
4741184
Link To Document :
بازگشت