Title :
Spiral-scan Atomic Force Microscopy: A constant linear velocity approach
Author :
Mahmood, Iskandar A. ; Moheimani, S. O Reza
Author_Institution :
Sch. of Electr. Eng. & Comput. Sci., Univ. of Newcastle, Callaghan, NSW, Australia
Abstract :
This paper describes an alternative method to the widely-used raster-scan technique for Atomic Force Microscopy (AFM). In this method, the sample is scanned in a spiral pattern instead of the well established raster trajectory. A spiral pattern is produced by applying cosine and sine signals with slowly varying amplitudes to the x-axis and y-axis of an AFM scanner respectively. In order to ensure that the spiral trajectory travels at a constant linear velocity (CLV), frequency and amplitude of the input signals are varied simultaneously in a way that the linear velocity of the scanner is kept constant. Experimental results obtained by implementing the CLV spiral scan on a commercial AFM indicate that, compared with the raster-scan method, high-quality AFM images of equal area and pitch can be generated two times faster and using half of the total traveled distance.
Keywords :
atomic force microscopy; constant linear velocity; cosine signal; spiral pattern scanning; spiral scan atomic force microscopy; spiral trajectory;
Conference_Titel :
Nanotechnology (IEEE-NANO), 2010 10th IEEE Conference on
Conference_Location :
Seoul
Print_ISBN :
978-1-4244-7033-4
Electronic_ISBN :
1944-9399
DOI :
10.1109/NANO.2010.5698063