Title :
Linking objects in videos by importance sampling
Author :
Gatica-Perez, Daniel ; Sun, Ming-Ting
Author_Institution :
IDIAP, Martigny, Switzerland
Abstract :
We present an approach to create hyper-links between video segments that contain objects of interest, based on video structuring, object definition, and stochastic object localization in the video structure. Localization is formulated in the metric mixture model framework, which allows for the joint probabilistic modeling of a (user-defined) set of color appearance exemplars and their geometric transformations. Candidate object configurations are drawn from a prior distribution using importance sampling - which guides the search towards regions of the configuration space likely to contain the correct object configuration, thus avoiding exhaustive processing - and evaluated using Bayes´ rule. Results of linking real objects (with changes of size and pose) in several home videos illustrate the performance of the method.
Keywords :
Bayes methods; content-based retrieval; image colour analysis; importance sampling; probability; stochastic processes; video databases; video signal processing; Bayes´ rule; color appearance exemplars; configuration space regions; content-based video browsing; content-based video retrieval; geometric transformations; home videos; hyper-links; importance sampling; joint probabilistic modeling; metric mixture model; object configurations; object definition; stochastic object localization; video objects linking; video segments; video structuring; Clustering algorithms; Color; Content based retrieval; Face detection; Image segmentation; Joining processes; Monte Carlo methods; Solid modeling; Stochastic processes; Videos;
Conference_Titel :
Multimedia and Expo, 2002. ICME '02. Proceedings. 2002 IEEE International Conference on
Print_ISBN :
0-7803-7304-9
DOI :
10.1109/ICME.2002.1035666