DocumentCode :
2294793
Title :
Robust Stability of Discrete Systems with Uncertainties and Random Delay
Author :
Guo, LiangDong ; Gu, Hong
Volume :
3
fYear :
2010
fDate :
13-14 March 2010
Firstpage :
291
Lastpage :
294
Abstract :
A new type of discrete system with random delay and uncertainties is proposed. The problem of robustly globally exponentially stable in the mean square sense for the proposed system is investigated. By defining a Lyapunov-Krasovskii functional by utilizing some new finite sum equalities for the bounding of cross term, a delay-distribution-dependent criterion is obtained. Different from the existing ones, the proposed criterion depends on not only the size of the delay but also the probability distribution of it. The conditions are represented in the form of linear matrix inequalities (LMIs). Numerical examples suggest that the results are effective and are an improvement over previous ones.
Keywords :
Lyapunov matrix equations; asymptotic stability; delays; discrete time systems; linear matrix inequalities; probability; robust control; uncertain systems; Lyapunov-Krasovskii function; Robust stability; delay-distribution-dependent criterion; discrete systems; linear matrix inequalities; probability distribution; random delay; uncertainties delay; Automation; Delay effects; Delay systems; Linear matrix inequalities; Mechatronics; Probability distribution; Robust stability; Robustness; Time varying systems; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Measuring Technology and Mechatronics Automation (ICMTMA), 2010 International Conference on
Conference_Location :
Changsha City
Print_ISBN :
978-1-4244-5001-5
Electronic_ISBN :
978-1-4244-5739-7
Type :
conf
DOI :
10.1109/ICMTMA.2010.559
Filename :
5459547
Link To Document :
بازگشت