DocumentCode :
2294889
Title :
Prediction of wind-induced pressures on long-span roofs with complex shape using artificial neural networks
Author :
Xu An ; Zhao Ruohong
Author_Institution :
Joint Res. Center for Eng. Struct. Prevention & Control, Guangzhou Univ.-Tamkang Univ., Guangzhou, China
Volume :
3
fYear :
2010
fDate :
10-12 Aug. 2010
Firstpage :
1297
Lastpage :
1304
Abstract :
The backpropagation neural network(BPNN) and the radial basis function neural network(RBF) are widely employed to simulate many kinds of nonlinear relationships, and have received increasing interests in recent years. This paper is concerned with the above two artificial neural networks for the prediction of mean wind-induced pressures of two long-span roof structures, the Shenzhen Citizen Center(SCC) and the Guangzhou International Exhibition Center(GIEC). In this study, simultaneous pressure measurements are made on two long-span roof structure models in a boundary layer wind tunnel and parts of the model test data are used as the training sets for the two ANN models to recognize the input-output patterns. Comparisons of the prediction results by the two ANN approaches and those from the wind tunnel test are made to examine the performance of the two ANN models, which demonstrates that the two ANN approaches can successfully predict the pressures on the corner surfaces of the long-span roof structure except the approaching wind direction, and if more experimental data are involved in network training, the network may provide more accurate prediction. It is also indicated in this paper that both the BPNN and the RBF prediction illustrate better performance in an interpolation than that in an extrapolation case.
Keywords :
backpropagation; pattern recognition; pressure measurement; radial basis function networks; roofs; wind tunnels; ANN models; GIEC; Guangzhou International Exhibition Center; RBF; SCC; Shenzhen citizen center; artificial neural networks; backpropagation neural network; boundary layer wind tunnel; input-output pattern recognittion; interpolation; long-span roof structure models; pressure measurements; radial basis function neural network; wind tunnel test; wind-induced pressures prediction; Accuracy; Artificial neural networks; Data models; Neurons; Pressure measurement; Training; Wind forecasting; backpropagation neural networks; large roof; radial basis function neural networks; wind tunnel test; wind-induced pressures;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Natural Computation (ICNC), 2010 Sixth International Conference on
Conference_Location :
Yantai, Shandong
Print_ISBN :
978-1-4244-5958-2
Type :
conf
DOI :
10.1109/ICNC.2010.5583601
Filename :
5583601
Link To Document :
بازگشت