DocumentCode :
2295915
Title :
The radii of Sheffer functions over E(3)
Author :
Beckman, Jeffrey ; Wesselkamper, T.C.
Author_Institution :
Graduate Sch., City Univ. of New York, NY, USA
fYear :
1995
fDate :
23-25 May 1995
Firstpage :
72
Lastpage :
77
Abstract :
If f is a two place function over E(k) that is either Sheffer or Sheffer with constants, then the radius of f is that least natural number r such that each two place function over E(k) can be defined as the composition of r or fewer copies of f. The radii of the 322 isotopy classes of Sheffer functions over E(3) are calculated. A sequence of useful conditions that a Sheffer function have small radius is developed; a sequence of useful conditions that a symmetric Sheffer function have small radius is developed
Keywords :
functions; multivalued logic; E(3); Sheffer functions radii; isotopy classes; least natural number; symmetric Sheffer function; two place function; Circuits; Educational institutions; Performance evaluation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multiple-Valued Logic, 1995. Proceedings., 25th International Symposium on
Conference_Location :
Bloomington, IN
ISSN :
0195-623X
Print_ISBN :
0-8186-7118-1
Type :
conf
DOI :
10.1109/ISMVL.1995.513512
Filename :
513512
Link To Document :
بازگشت