DocumentCode :
2295948
Title :
Completeness theory for vector partial multiple-valued logic functions
Author :
Romov, B.A.
Author_Institution :
New York, NY, USA
fYear :
1995
fDate :
23-25 May 1995
Firstpage :
86
Lastpage :
90
Abstract :
A general completeness criterion for the finite product ΠP (ki) of algebras P(ki) of all partial functions of ki-valued logic (ki⩾2, i=1,…n; n⩾2) is considered and a Galois connection between the lattice of subalgebras of ΠP(ki) and the lattice of subalgebras of multiple-base invariant relations algebra (with operations of a restricted quantifier free calculus) is established. This is used to obtain the full description of all maximal subalgebras of ΠP(ki) and, thus, to solve the completeness problem in ΠP(ki)
Keywords :
Algebra; Artificial intelligence; Calculus; Lattices; Logic functions; Parallel processing; Sufficient conditions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multiple-Valued Logic, 1995. Proceedings., 25th International Symposium on
Conference_Location :
Bloomington, IN
ISSN :
0195-623X
Print_ISBN :
0-8186-7118-1
Type :
conf
DOI :
10.1109/ISMVL.1995.513514
Filename :
513514
Link To Document :
بازگشت